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SUPPLEMENTAL FIGURE AND TABLE LEGENDS 

 

Figure S1. Reactivity of activated disulfides with s4U and in vitro modulation of bias in 

MTS- and HPDP-biotin enrichments, related to Figure 1 

(A) 1H NMR spectrum of s4U alone. Peak labeled with a red “*” corresponds to the starred 

proton in the s4U structure. (B) 1H NMR spectrum of s4U when treated with methane 

methylthiolsufonate (MeMTS), the same reactive disulfide of MTS-biotin. MeMTS was 

incubated with s4U for 30 min and the extent of disulfide exchange was monitored by the 

chemical shift in proton labeled with a red “*”. Peak labeled with a blue “*” represents the 

chemical shift upon disulfide bond formation. (C) 1H NMR spectrum of s4U when treated with a 

compound containing the same functional group of HPDP-biotin. 3-[2-Pyridyldithio]propionyl 

hydrazide (PDPH) was incubated with s4U for 2 hr and the extent of disulfide exchange was 

monitored by changes in chemical shift  as in (B). (D) RNA from E. coli K-12 cells was reacted 

with MTS-TAMRA fluorescent dye and visualized on a 5% urea-PAGE gel. K-12 cells express 

ThiI, an enzyme that selectively modifies U8 of tRNA to s4U8 (Mueller et al., 1998b).  RNA 

from a ΔthiI knockout shows little TAMRA signal (traces of unmethylated 2-thiouridine on 

tRNA can still react), whereas a strong TAMRA signal is present in the K-12 cells only in tRNA. 

Total RNA was stained with GelGreen. (E) Schematic of in vitro enrichment of s4U-RNA using 

an RNA ladder. An RNA ladder was in vitro transcribed with Cy5-CTP and with or without 

added s4UTP. s4U-RNAs were enriched by reacting with disulfide-activated biotin derivatives 

using either HPDP, MTS, or thiolsulfonate (TS, an alternative disulfide activated biotin reagent) 

chemistry. (F) Input, flow-through, and elution RNAs were analyzed by urea-PAGE and 

visualized by Cy5 fluorescence. Band intensities were quantified using ImageJ. (G) Comparison 



between the yields observed in (E) and expected enrichment using models that assume different 

biotinylation efficiencies. In all cases modeled lines assume ratio of s4U/Utotal = 0.075 to 

determine the expected yield given different biotinylation efficiencies (𝑦!"# ) based on the 

equation: 

yield  RNA =    1− 1− 𝑦!"# !   𝑝 𝑈! = 𝑗
!!

!!!
 

(see also the “Modeling expected yields” section of the Detailed Protocol). In comparison to the 

models results, empirical yields using the band intensities from (B) were plotted based on 

transcript length. (H) Effects of biotin concentration on modeled s4U-RNA enrichment. Synthetic 

short RNAs (1 nM) with one s4U residue (red) or zero s4U residues (green) were enriched by 200 

µM (comparable to 50 µg biotin in total RNA pulldown) or 20 µM HPDP- or MTS-biotin. No 

significant difference in enrichment was observed using these two concentrations of MTS-biotin 

eluent, whereas 200 µM HPDP-biotin showed 6-fold greater enrichment over 20 µM  HPDP-

biotin. 

 

Figure S2. Reproducibility of MTS-biotin enrichment, related to Figure 2 

(A) Whole genome alignments of RNA-Seq samples as in Figure 2B. The y-axis indicates the 

number of reads normalized to total number of S. pombe aligned reads. To compare coverage 

between samples using the same scale on the y-axis, in many cases read coverage exceeds the y-

axis upper limit in Input (135 cases), MTS-biotin (127 cases) and HPDP-biotin (4 cases). 

Chromosomes are indicated below the mapped reads. (B) Scatter plots and Pearson correlations 

of normalized FPKM values for H. sapiens transcript isoforms. Plots show Input 1 vs. Input 2 

(left), MTS-biotin replicate 1 vs. HPDP-biotin (center), and MTS-biotin replicate 1 vs. MTS-

biotin replicate 2 (right). (C) Example of genes enriched by HPDP-biotin and MTS-biotin as in 



Figure 2C. (D) Total reads for each RNA-Seq sample that mapped to the H. sapiens genome, 

normalized by total number of reads that mapped to the S. pombe genome, as in Figure 2D. (E) 

Samples enriched by MTS- or HPDP-biotin from RNA-seq submission were analyzed by qPCR 

using gene-specific primers for RPL18A, MOV10, HOXA9, CBX6, and UPF1 with two 

replicates. Ct values from qPCR were used to calculate percent input using the equation:  
 

1
2(!"!"#$%&!!"!"#$%)

  

where the input is the average of two replicates. Error bars indicate the mean of two technical 

replicates +/- SEM. (F) Ct values from qPCR were plotted against the number of reads (log2 

transformed) for deep sequencing in input (triangles), MTS- (circles) and HPDP- (squares) 

enriched samples. 

 

Figure S3. Analysis of s4U metabolic labeling and enrichment for miRNA RATE-Seq, 

related to Figure 3 

(A-C) Scatter plots and Pearson correlations of RNA-Seq quantifications of H. sapiens miRNA 

transcripts. Plots show (A) reads from miRNA isolated from cells with not s4U treatment 

compared to reads from total miRNA from cells after 22 days of s4U treatment; (B) analysis of 

long RNAs from the same cells as in (A); and (C) analysis of miRNA isolated from 22 day s4U 

treatment (10% input) vs. MTS-biotin enriched miRNA from 22 days of s4U treatment. (D) 

miRNAs enriched with HPDP- and MTS-biotin. Control miRNA spikes containing one s4U 

(EED004r) or zero s4U (EED0095r) were enriched with s4U-miRNA samples and enrichment 

was detected by qPCR using the same equation as above. The s4U-containing spike-in control 

was not significantly enriched over background by HPDP-biotin (p = 0.27), whereas the s4U-

containing spike-in control was significantly enriched by MTS-biotin (p = 0.034). (E) Heatmap 



similar to Figure 3C with annotated correlation coefficients (Pearson’s r) between miRNA levels 

at different times after s4U treatment. Replicate samples are indicated by (rep). (F) The 

enrichment of select miRNAs using MTS-biotin after 1 hr and 6 days s4U treatment was 

validated by qPCR and quantified as fold enrichment as in Figure S2E. Error bars indicate the 

mean of three technical replicates +/- SEM. 

 

Table S1. RNA-Seq alignment statistics 

 

Table S2. Fast-turnover miRNAs that have previously been reported to be stable when 

transcription is inhibited. A list of miRNAs determined to be fast turnover (see Figure 3E), and 

their turnover rates (% turnover) in experiments where miRNA levels are monitored following 

transcriptional blockade (Bail et al., 2010; Guo et al., 2015). 

 

Table S3. Oligonucleotide sequences. Names indicate internal spike codes (in the case of RNA 

synthetic spike), or target primer sequences (in the case of DNA qPCR primers). RNA synthetic 

spikes are synthetic RNA sequences containing either zero or one s4U nucleotides that were 

included during s4U-miRNA enrichment and sequencing (see Experimental Procedures). DNA 

qPCR primers were designed from sequences provided in Gregersen et al. 2014.  
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